Solve the following equation: x^3 + 8x^2 + 4x - 48=0

To solve a cubic equation, you first have to guess at values for x that will solve the equation. Generally, it is good practice to start with 0, then use +/- 1, +/- 2 and so on until you find a value that works. For this particular question, the value x = 2 works to solve the equation. Following this, we factorise the solution out of the equation. i.e. as x - 2 = 0 for x = 2, we factorise (x - 2) out of our cubic equation. This gives us the following: (x-2)(x^2 + 10x + 24) = 0. We can then solve the quadratic equation that makes up the second term to find the remaining two solutions for the cubic equation. Using the quadratic formula to do so quickly, we find the remaining two solutions are x = -4 and x = -6. In summary, our three solutions are x = 2, -4 and -6.

Answered by Richard B. Maths tutor

3560 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integration


When integrating, why do we add a constant to the resulting equation?


C and D are two events such that P(C) = 0.2, P(D) = 0.6 and P(C|D) = 0.3. Find P(D|C), P(C’ ∩ D’) & P(C’ ∩ D)


Use the product rule to differentiate y=2xsinx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences