You are given a sequence of numbers: -2, 12, 32, 58, 90, ... Work out the 7th term in this sequence.

This is a question from Higher Tier and involves 1) realising that 2nd difference is a constant: 6. 2) knowing that constant 2nd difference implies the sequence is quadratic. 3) remembering or proving that constant of 2nd difference - "a" gives us the coefficient of n^2 in the sequence as (a/2)n^2. In our case the answer is (3)n^2. 4) Working out the whole sequence by calculating 3n^2 for n = 1, 2, ... 5 and subtracting the original sequence from the latter. 5) obtaining the linear sequence from the difference to be -5, 0, 5, 10, ... and calculating its (n)th term to be (5n - 10) for n > 0. 6) Merge the two (n)th term sequences into [3n^2 + 5n - 10]. 7) substitute 7 into the whole sequence to obtain 3*(7^2) + 5(7) - 10 = 172. 

Answered by Maxym V. Maths tutor

4446 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

7x + 6 > 1 + 2x


Rearrange the equation y=3x+2 to make x the subject.


How can I find the angle between 2 vectors?


In a class of 28 students, the average height of the 12 boys is 1.58 metres. The average height of the class is 1.52 metres. What is the average of the girls?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences