Compare the following logarithms in base 1/2 without a calculator: log(8) and log(512)

Compare through subtraction : log0.5(8)- log0.5(512) = xUsing logarithm rule in addition/subtraction: loga (b)+loga(c) = loga(b*c) ; loga (b)-loga(c) = loga(b/c) where a,b and c are constants (note both logarithms need to have same base 'a' for this rule to apply)
We get: log0.5(8)- log0.5(512) = log0.5(8/512) = log0.5(1/64)Using the logarithm properties: -loga(1) = 0 for any base 'a' -if base a < 1 the logarithmic function is strictly decreasing if base a > 1 the logarithmic function is strictly increasing
In our case, the base a = 1/2 is inferior to 1, this means the logarithm will be positive for x < 1 and negative for x > 1.We have 1/64 < 1 which implies log0.5(1/64) > 0.Hence :log0.5(8) - log0.5(512) > 0And finally:log0.5(8) > log0.5(512)

GA
Answered by Gael A. Maths tutor

3198 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Maths


Using the factor theorem, factorise x^4 - 3x^3 - 3x^2 + 11x - 6


Solve to find sin x , 4cos^2 + 7sin x -7 =0


The variables x and y are related by y = 5^x. How do I find the value of x when y is set to 15?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning