Differentiate y=ln(x)+5x^2, and give the equation of the tangent at the point x=1

First differentiate the equation, giving you, y'=(1/x)+10x. To get the gradient at this point of the curve, plug in x=1, to get a y' value of 11, and a y value of 5. From there you can plug these three numbers into the equation y-y1=y'(x-x1) to get the equation for the straight line y=11x-6.

Answered by Harrison M. Maths tutor

2882 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle with centre C has equation: x^2 + y^2 + 20x - 14 y + 49 = 0. Express the circle in the form (x-a)^2 +(y-b)^2=r^2. Show that the circle touches the y-axis and crosses the x-axis in two distinct points.


how do integrate an equation with a surd or a fraction?


Write 9sin(x) + 12 cos(x) in the form Rsin(x+y) and hence solve 9sin(x) + 12 cos(x) = 3


The line AB has equation 5x + 3y + 3 = 0. The point with coordinates (2k + 3, 4 -3k) lies on the line AB. How do you find the value of k.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences