Find the stationary points of the graph x^3 + y^3 = 3xy +35

Differentiate wrt x to get 3x2 + 3y2dy/dx = 3y + 3x dy/dx Rearrange to get dy/dx = (3x2 - 3y)/(3x-3y2). Set dy/dx =0 and infer y=x2. Substitute in for y into original equation and rearrange to get x6 -2x3 -35 =0. Let p= x3 . Equation in terms of p becomes p2 -2p -35 =0. p=7 or -5. Therefore stationary points are (7(1/3), 7(2/3)) and (-5(1/3), -5(2/3)).

Answered by Joe B. Maths tutor

8820 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve 29cosh x – 3cosh 2x = 38 for x, giving answers in terms of natural logarithms


A tank is filled with water up to the height H0. At the bottom of the tank, there is a tap which is opened at t=0. How does the height of liquid change with time?(Hint: dH/dt is proportional to -H)


How can I differentiate x^2+2y=y^2+4 with respect to x?


Differentiate and factorise y = x^2(3x + 1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences