Find the stationary points of the graph x^3 + y^3 = 3xy +35

Differentiate wrt x to get 3x2 + 3y2dy/dx = 3y + 3x dy/dx Rearrange to get dy/dx = (3x2 - 3y)/(3x-3y2). Set dy/dx =0 and infer y=x2. Substitute in for y into original equation and rearrange to get x6 -2x3 -35 =0. Let p= x3 . Equation in terms of p becomes p2 -2p -35 =0. p=7 or -5. Therefore stationary points are (7(1/3), 7(2/3)) and (-5(1/3), -5(2/3)).

JB
Answered by Joe B. Maths tutor

9957 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find both stationary points for y= 4x^(3)-3x^(2)-60x+24. Also find the nature of those points.


Differentiate x^(1/2)ln(3x) with respect to x.


Integrate, with respect to x, xCos3x


Find d^2y/dx^2 for y=4x^4−3x^3−6x^2+x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning