Find the stationary points of the graph x^3 + y^3 = 3xy +35

Differentiate wrt x to get 3x2 + 3y2dy/dx = 3y + 3x dy/dx Rearrange to get dy/dx = (3x2 - 3y)/(3x-3y2). Set dy/dx =0 and infer y=x2. Substitute in for y into original equation and rearrange to get x6 -2x3 -35 =0. Let p= x3 . Equation in terms of p becomes p2 -2p -35 =0. p=7 or -5. Therefore stationary points are (7(1/3), 7(2/3)) and (-5(1/3), -5(2/3)).

JB
Answered by Joe B. Maths tutor

9100 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the stationary points y=x^4-8x^2+3


How do you integrate the natural logarithm ln(x)?


1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


How do you find the first order derivative of sin(x) and cos(x) functions?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences