Find the stationary points of the graph x^3 + y^3 = 3xy +35

Differentiate wrt x to get 3x2 + 3y2dy/dx = 3y + 3x dy/dx Rearrange to get dy/dx = (3x2 - 3y)/(3x-3y2). Set dy/dx =0 and infer y=x2. Substitute in for y into original equation and rearrange to get x6 -2x3 -35 =0. Let p= x3 . Equation in terms of p becomes p2 -2p -35 =0. p=7 or -5. Therefore stationary points are (7(1/3), 7(2/3)) and (-5(1/3), -5(2/3)).

JB
Answered by Joe B. Maths tutor

9882 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle is moving in the with acceleration (2t - 3) ms^-2 and initial velocity 2ms^-1. Find the distance travelled when the velocity has reached 12ms^-1.


Express 2(x-1)/(x^2-2x-3) - 1/(x-3) as a fraction in its simplest form.


solve dy/dx = y(sec x)^2


A curve has parametric equations x = 1 - cos(t), y = sin(t)sin(2t) for 0 <= t <= pi. Find the coordinates where the curve meets the x-axis.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning