solve the simultaneous equation: 8x+2y=46; 7x+3y=47

To solve this problem, we want to make either the x or the y values either equation the same.To work out whether to change the x or the y values, work out the lowest common multiple for each.For x, the values are 7 and 8 so the lowest common multiple is 56For y, the values are 2 and 3 so the lowest common multiple is 6 - this is lower hence we will change the y valuesto get 6y in each equation, multiply the first by 3 (as 2y x 3 = 6y) and the second by 2 (as 3y x 2 = 6y)This will give:24x+6y=13814x+6y=94minusing the bottom equation from the top one will eliminate the y values and give:10x = 44therefore dividing by 10:x=4.4

JW
Answered by Jess W. Maths tutor

4982 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A voucher takes 12% off a bill at a restaurant. After using the voucher, the bill for a meal is £31.68. How much was the bill before using the voucher?


How do you solve the following simultaneous equations? 5x+6y=3 2x-3y=12


Rearranging formulae


Why doesn't (a+b)^2 = a^2+b^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning