The curve C has equation y = x^3 - 3x^2 - 9x + 14. Find the co-ordinates and nature of each of the stationery points of C.

Step 1: Differentiate y with respect to x. dy/dx = 3x^2 - 6x - 9
Step 2: Equate to zero and solve. 3x^2 - 6x - 9 = 0(x - 3)(x+1) = 0x = 3, x = -1
Step 3: Substitute into original equation to find y. At x = 3, y = -13. ==>> (3, -13)At x = -1, y = 19 ==>> (-1, 19)
Step 4: Find the second derivatived^2y/dx^2 = 6x - 6
Step 5: Determine the nature of the stationery pointsAt x = 3, d^2y/dx^2 = 12Therefore, (3, -13) = MINIMUMAt x = -1, d^2y/dx^2 = -12Therefore, (-1, 19) = MAXIMUM

Answered by Daniel A. Maths tutor

4111 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the minimum of the equation sin^2(x) + 4sin(x)?


Find the curve whose gradient is given by dy/dx=xy and which passes through the point (0,3)


Find the values of A between and including 0 and 360 degrees for tan(2A) = 3tan(A)


Find the coordinates of the centre of the circle with equation: x^2 + y^2 − 2*x + 14*y = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences