The curve C has equation y = x^3 - 3x^2 - 9x + 14. Find the co-ordinates and nature of each of the stationery points of C.

Step 1: Differentiate y with respect to x. dy/dx = 3x^2 - 6x - 9
Step 2: Equate to zero and solve. 3x^2 - 6x - 9 = 0(x - 3)(x+1) = 0x = 3, x = -1
Step 3: Substitute into original equation to find y. At x = 3, y = -13. ==>> (3, -13)At x = -1, y = 19 ==>> (-1, 19)
Step 4: Find the second derivatived^2y/dx^2 = 6x - 6
Step 5: Determine the nature of the stationery pointsAt x = 3, d^2y/dx^2 = 12Therefore, (3, -13) = MINIMUMAt x = -1, d^2y/dx^2 = -12Therefore, (-1, 19) = MAXIMUM

DA
Answered by Daniel A. Maths tutor

4791 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given x = 3sin(y/2), find dy/dx in terms of x, simplifying your answer.


Integrate xlnx with respect to x


Solve the Equation: 2ln(x)−ln (7x)=1


If a ball is dropped from 6m above the ground, how long does it take to hit the floor and what is its speed at impact (assuming air resistance is negligible)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning