Find the coordinates of the stationary points for the curve y = x^4 - 2*x^2 + 5.

First solve to find dy/dx.dy/dx = 4x^3 - 4xThe stationary points occur when dy/dx = 0. Solve the equation to find the values of x for when dy/dx = 0.4x(x^2 - 1) = 0 x = 0, x = 1, x = -1Finally sub in the values of x into the equation for y to find the corresponding y values.y = 5, y = 8, y = 8

Answered by Matthew W. Maths tutor

4042 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area beneath the curve with equation f(x) = 3x^2 - 2x + 2 when a = 0 and b = 2


How to find the equation of a tangent to a curve at a specific point.


Integrate $$\int xe^x \mathop{\mathrm{d}x}$$.


Prove the following identity: (1+cos⁡(x)+cos⁡(2x))/(sin⁡(x)+sin⁡(2x) )=cot⁡(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences