A curve has the equation: x^3 - x - y^3 - 20 = 0. Find dy/dx in terms of x and y.

x3 - x - y3 - 20 = 0 Find dy/dx. Differentiate with respect to x.
3x2 - 1 - 3y2(dy/dx) = 0Therefore: dy/dx = (3x2 - 1)/3y2

KP
Answered by Karishma P. Maths tutor

3610 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient at x=1 for the curve y=2x*e^2x


Given y = 2x(x2 – 1)5, show that (a) dy/dx = g(x)(x2 – 1)4 where g(x) is a function to be determined. (b) Hence find the set of values of x for which dy/dx > 0


Integrate x^2e^x with respect to x between the limits of x=5 and x=0.


A small stone is projected verically upwards from a point O with a speed of 19.6ms^-1. Modeeling the stone as a particle moving freely under gravity find the time for which the stone is more than 14.6m above O


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning