A rectangular hyperbola has parametric equations x = 4t, y = 4/t , (z non 0). Points P and Q on this hyperbola have parameters t = 1/4 and t = 2. Find the equation of the line l which passes through the origin and is perpendicular to the line PQ.

Since we are told that the line l is perpendicular to the line PQ, we first need to find out the gradient of PQ.
To do this, it is easiest to find out the co-ordinates of points P and Q in terms of their cartesian co-ordinates.
At P, t = 1/4, and since P is a point on our hyperbola, we can substitute this into the equation x = 4t to see that x = 4 * 1/4 = 1. Similarly, y = 4 / t = 4 / (1/4) = 16. Therefore, P is at (1, 16). We use exactly the same method for point Q, this time using t = 2 to obtain the co-ordinates for Q (8, 2).
We can then calculate the gradient of PQ by using the formula gradient = (y2 - y1) / (x2 - x1) = (2 - 16) / (8 - 1) = -2
Hence the gradient of our line l is -1 / -2 = 1/2.
Since the question tells us that our line goes through the origin, we know that our intercept value must be zero, so the equation of our line is y = mx + c = 1/2x + 0 = 1/2 x

Related Further Mathematics A Level answers

All answers ▸

The infinite series C and S are defined C = a*cos(x) + a^2*cos(2x) + a^3*cos(3x) + ..., and S = a*sin(x) + a^2*sin(2x) + a^3*sin(3x) + ... where a is a real number and |a| < 1. By considering C+iS, show that S = a*sin(x)/(1 - 2a*cos(x) + a^2), and find C.


I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


Show, using the focus-directrix property for an ellipse, that PS +PS'=2a where P is a point on the ellipse and S and S' are the two foci.


Given that y = arcsinh(x), show that y=ln(x+ sqrt(x^2 + 1) )


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences