Using the identity cos(A+B)= cosAcosB-sinAsinB, prove that cos2A=1-2sin^2A.

Use cos(A+B)=cosAcosB-sinAsinB and let A=B so cos(A+A)=cosAcosA-sinAsinA this means cos(2A)=cos2A-sin2A and since cos2A+sin2A=1, cos2A=1-sin2A. Therefore, by subbing cos2A=1-sin2A into cos(2A)=cos2A-sin2A, we get cos(2A)=1-sin2A-sin2A=1-2sin2A.

Answered by Rebecca F. Maths tutor

19692 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following equations. Leave answers in simplest terms a)e^(3x-9)=8. b) ln(2y+5)=2+ln(4-y)


Integrate 3 sin(x) + cos(2x)


Sketch the line y=x^2-4x+3. Be sure to clearly show all the points where the line crosses the coordinate axis and the stationary points


For a curve of gradient dy/dx = (2/(x^2))-x/4, determine a) d^2y/dx^2 b) the stationary point where y=5/2 c) whether this is a maximum or minmum point and d) the equation of the curve


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences