Find the coordinate of the stationary point on the curve y = 2x^2 + 4x - 5.

The important point in the question is the term 'stationary point'. This is where the graph of y will 'flattern out'. If we look at this graph, we can say that the gradient is equal to 0 at this point. Therefore, dy/dx = 0. dy/dx = 4x +4 = 0. Therefore, x = -1. Plug this value back into y to get y = 2(-1)^2 + 4(-1) - 5 = -7. So the coordinate of the stationary point will be at (-1,-7).

SM
Answered by Serkan M. Maths tutor

5055 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 2cos2(x) + 3sin(x) = 3, where 0<x<=π


Integral of Cosec(x)/Sec(x) (i.e. Use of trignometric identities)


Given that 2-3i is a root to the equation z^3+pz^2+qz-13p=0, show that p=-2 and q=5.


Use Simpson’s Rule with five ordinates to find an approximate value for the integral e^(x^2)dx between the values of 0 and 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning