Solve the simultaneous equations..... 3x - y + 3 = 11 & 2x^2 + y^2 + 3 = 102 where X and Y are both positive integers.

Here we have two equations with two unknowns, the method we use to solve this is substitution. First, find one of the unknowns in terms of the other by rearranging the first equation to arrive at y = 3x - 8, then, substitute this into the second equation. Then expand the brackets and collate like terms and you arrive at 11x^2 - 48x + 67 = 102. By equating to zero you get.... 11x^2 - 48x - 35 = 0. This should now be recognised as a quadratic equation you can solve by factorising.... (11x + 7 ) (x - 5) = 0. Therefore x is either 5 or -7/11.However we must remember the question states X and Y are both positive thus we reject X = - 7/11. Finally take X = 5 and substitute it back into either of the original equations and solve for Y. You'll find that Y = 7.

Answered by Reuben W. Maths tutor

2825 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

ForA=2x^2 –18x+80 (i) find dA/dx , (ii) find the value of x for which A is a minimum


Solve this equation x^2 +4x - 5


Find the roots of the equation y = 2x^2 + 5x + 2.


Bob sprints down a 100 metre track as fast as he can and as he arrives at the finish, a light gate cuts a timer that has been active since Bob began his sprint. It reads 12.45 seconds. calculate Bobs average speed during the sprint.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences