Solve the simultaneous equations..... 3x - y + 3 = 11 & 2x^2 + y^2 + 3 = 102 where X and Y are both positive integers.

Here we have two equations with two unknowns, the method we use to solve this is substitution. First, find one of the unknowns in terms of the other by rearranging the first equation to arrive at y = 3x - 8, then, substitute this into the second equation. Then expand the brackets and collate like terms and you arrive at 11x^2 - 48x + 67 = 102. By equating to zero you get.... 11x^2 - 48x - 35 = 0. This should now be recognised as a quadratic equation you can solve by factorising.... (11x + 7 ) (x - 5) = 0. Therefore x is either 5 or -7/11.However we must remember the question states X and Y are both positive thus we reject X = - 7/11. Finally take X = 5 and substitute it back into either of the original equations and solve for Y. You'll find that Y = 7.

RW
Answered by Reuben W. Maths tutor

3242 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you calculate arc length and sector area and why is it calculated like this? You are given sector angle 40 degrees and radius 7cm and asked to give answers to 3sf.


write (x+2)(x+3)(x+5) in the form ax^3+bx^2+cx+d


25^(3/2)


Can you solve these simultaneous equations and find the values of x and y? Equation 1: 2x + y = 14 Equation 2: 4x - y = 10.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences