If a ball is launched at ground level at a velocity v and angle θ, find an expression for it's height at horizontal distance x.

Firstly it must be understood that vertical and horizontal motion can be treated as independent, as they are perpendicular to each other (and acceleration due to gravity only affects the y component of velocity). So considering vertical forces, an acceleration of -g (-9.81ms-2) acts in the positive y direction. The vertical component of velocity can therefore be found with SUVAT (equations for constant acceleration). We know initial velocity in the positive y direction 'uy' = vsin(θ), acceleration 'a' = -g, time is known as 't' and we are trying to find vertical displacement 'y' (using y instead of the normal 's' for displacement), so we can use y=uyt + (1/2)at2=vsin(θ)t - (1/2)gt2.
We know everything in this expression apart from t, so using that the horizontal velocity is constant at ux=vcos(θ), use x=uxt + (1/2)at2=vcos(θ)t + (1/2)at2 , again where 'x' is horizontal displacement but where a=0 as there are no horizontal forces (so x=vcos(θ)t). Therefore we can rearrange for t=x/vcos(θ), then insert this into the y equation, so y=(vsin(θ)x)/vcos(θ) - (g/2)(x2/(vcos(θ))2), or more simply y=xtan(θ)-(g/2)(x/vcos(θ))2.

OP
Answered by Oscar P. Physics tutor

3342 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the most effective use of the equation sheet?


A ball is released from height h w.r.t. the ground. Draw a qualitative height versus time diagram of the ball bouncing in a non-ideal case.


A water jet starts at a point X and reaches its maximum height at a point Y. Air resistance has a negligible effect on the motion of the water jet. (i) State the direction of the force acting on the jet at Y. (1 mark)


A space probe of mass 1000kg, moving at 200m/s, explosively ejects a capsule of mass 300kg. The speed of the probe after the explosion is 250m/s. What is the velocity of the capsule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning