Find the area under the curve of y=1/(3x-2)^0.5 between the limits x=1 and x=2 and the line y=0

This question requires integration since the area under the curve is equal to the integral between these bounds. Initially let u=3x-2 and differentiate with respect to x so then du/dx = 3. Rearrange to dx =du/3 and substitute this and u into the original integral. Then change the limits by substituting in x=2 for the upper limit and x=1 for the lower limit into u=3x-2. The new limits are then 4 ( for the upper ) and 1 (for the lower ). The integral is now : (u^-0.5)/3 du between limits u=4 and u=1. Integrating this gives [(2u^0.5)/3] (by 'adding one to the power and dividing by this new power'). Substitute in the calculated limits and subtract the upper from the lower limit as shown: (2(4)^0.5)/3 =4/3, (2(1)^0.5)/3 = 2/3, 4/3 -2/3 = 2/3. This gives a final area of 2/3 square units.

CT
Answered by Callum T. Maths tutor

2940 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integral of e^x*sinx


How to find y-intercept on a graphical calculator


A Block of mass 2kg is on an a smooth inclined plane where sin@ = 3/5 at point A. Point B is 5 meters down the incline. Find the time it will take for the block to reach point given it is at rest at point A.


How do you find the integral of 'x sin(2x) dx'?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences