Given two functions x = at^3 and y = 4a, find dy/dx

Solution: Parametric Differentiation with utilisation of Chain Rule.
By the chain rule: dy/dx = dy/dt * dt/dx
Note: dt/dx = 1 / (dx/dt)
So dy/dt = 0, dx/dt = 3at^2
So dy/dx = 0 * 1/(3at^2) and hence dy/dx = 0.

Answered by Michele P. Maths tutor

3262 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

In a science experiment a substance is decaying exponentially. Its mass, M grams, at time t minutes is given by M= 300e^-0. 5t


Solve the differential equation dx/dt=-6*x , given when t=0 x=7.


Sketch the graph y=Ax^2 where A is a constant


Find and classify all the stationary points of the function f(x) = x^3 - 3x^2 + 8


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences