Given two functions x = at^3 and y = 4a, find dy/dx

Solution: Parametric Differentiation with utilisation of Chain Rule.
By the chain rule: dy/dx = dy/dt * dt/dx
Note: dt/dx = 1 / (dx/dt)
So dy/dt = 0, dx/dt = 3at^2
So dy/dx = 0 * 1/(3at^2) and hence dy/dx = 0.

Answered by Michele P. Maths tutor

3048 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first 3 terms, in ascending powers of x, of the binomial expansion of (2 – 9x)^4 giving each term in its simplest form.


if y= e^(5x) what is dy/dx


The gradient of the curve at A is equal to the gradient of the curve at B. Given that point A has x coordinate 3, find the x coordinate of point B.


How do you differentiate 5x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences