Given two functions x = at^3 and y = 4a, find dy/dx

Solution: Parametric Differentiation with utilisation of Chain Rule.
By the chain rule: dy/dx = dy/dt * dt/dx
Note: dt/dx = 1 / (dx/dt)
So dy/dt = 0, dx/dt = 3at^2
So dy/dx = 0 * 1/(3at^2) and hence dy/dx = 0.

MP
Answered by Michele P. Maths tutor

3367 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle of mass m moves from rest a time t=0, under the action of a variable force f(t) = A*t*exp(-B*t), where A,B are positive constants. Find the speed of the particle for large t, expressing the answer in terms of m, A, and B.


The curve y = 4x^2 + a/x +5 has a stationary point. Find the value of the positive constant 'a' given that the y-coordinate of the stationary point is 32. (OCR C1 2016)


Sketch the curve with the equation y=x^2 +4x+4, labelling the points where it crosses or touches the axes.


Find the all the angles of a triangle with side lengths of 8cm, 11cm and 11cm.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences