Given two functions x = at^3 and y = 4a, find dy/dx

Solution: Parametric Differentiation with utilisation of Chain Rule.
By the chain rule: dy/dx = dy/dt * dt/dx
Note: dt/dx = 1 / (dx/dt)
So dy/dt = 0, dx/dt = 3at^2
So dy/dx = 0 * 1/(3at^2) and hence dy/dx = 0.

MP
Answered by Michele P. Maths tutor

3671 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Matthew gets £100 for his 16th birthday and chooses to invest the money into a bank with a 2% annual interest rate. By which birthday will Matthew have more than £150 in his account?


If a curve has equation y = (-8/3)x^3 - 2x^2 + 4x + 18, find the two x coordinates of the stationary points of this curve.


Given f(x)=2x^3 - 2x^2 + 8x, find f'(x) and f"(x).


How do you sketch the curve y=(x^2 - 4)(x+3), marking on turning points and values at which it crosses the x axis


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning