Where does the circle (x-6)^2+(y-7)^2=4 intersect with y=x+3

Where does the circle (x-6)2+(y-7)2=4 intersect with y=x+3We need to sub y=x+3 into the circle equation giving us an equation in just x:(x-6)2+(x-4)2=4Next we expand out the brackets:x2 -12x+36+x2-8x+16=4Next collect the terms:2x2-20x+48=0Next we need to factorise to solve for x:2(x2-10x+24)=2(x-6)(x-4)=0this gives us x solutions of x=6 and x=4Now we need to sub these back into y=x+3 to get the y coordinates.This gives y=9 and y=7The overall answer:The circle and the line given intersect at the points (6,9) and (4,7)

NL
Answered by Nicola L. Maths tutor

3129 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


How do I solve this inequality: x^2>2x ?


The height (h) of water flowing out of a tank decreases at a rate proportional to the square root of the height of water still in the tank. If h=9 at t=0 and h=4 at t=5, what is the water’s height at t=15? What is the physical interpretation of this?


How do you go about sketching a curve when all you are given is the equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning