Determine whether the line with equation 2x+ 3y + 4 = 0 is parallel to the line through the points with coordinates (9, 4) and (3, 8).

Parallel means that the lines have the same gradient/slope. For example, the lines in an equal sign are parallel.Consider the standard equation of a line is: y = mx + c where m is the gradient. Rewriting our equation gives us 2x + 3y +4 = 0 --> 3y = -2x -4 ----> y = -(2/3)x -(4/3c)From this standard form we see clearly the line has a slope of -2/3.Then we use the equation of finding the gradient of a line through two points: m = (y2 - y1)/( x2 - x1). Inputting the values we have we obtain m = (8-4)/(3-9) = 4/-6 = -2/3. We observe that the gradient of the lines are the same and therefore the lines are parallel

DE
Answered by Dominique E. Maths tutor

6680 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c


The curve C is paramterised by the equations: x = 5t + 3 ; y = 2 / t ; t > 0 Find y in terms of x and hence find dy/dx


How do you find the integral of sin^2(x) dx?


It is given that n satisfies the equation 2*log(n) - log(5*n - 24) = log(4). Show that n^2 - 20*n + 96 = 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning