Solve, by method of substitution, the simultaneous equations: 5x+y=22 2x+y=10

Solve by substitution:5x + y = 22 (1)2x + y = 10 (2)
First let us label the equations 1 and 2. In order to solve this set of equations we need to rearrange one of the equations so that we have one of the variables (x or y) equal to some expression, or in other words we need to make one of the variable the subject.
I am going to make y the subject in equation (1).
5x + y = 22 -5 -5 (we subtract 5 from both sides)
y= 22 -5x I'll call this equation (3).
So now I substitute (3) into (2) to get:
2x + (22 -5x) = 10
Rearrange to make x the subject:
22 -3x =103x = 12x = 4
Now we sub x=4 into equation (1).
5(4) + y = 2220 + y = 22y = 2
Answer x=4 y=2



AW
Answered by Amy W. Maths tutor

4684 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are green and red counters in a bag. There are 30 counters in total. The ratio of red to green counters is 1 : 5. There are 5 red counters in the bag. How many green counters are in the bag?


Find the value (8/125)^-2/3


Rearrange the equation y = 3(x+1)/4, making x the subject.


Factorise x^2 + 4x +3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences