Find the coordinates of the points where the lines y=x^2-5x+6 and y=x-4 intersect.

At the points of intersection the x and y coordinates will be the same. So we can solve the equations simultaneously to see what solutions to x and y solve both equations.Rearrange the second equation to get y=x+4, then set the two equations for y equal to each other.We get x^2-5x+6 = x+4.Rearrange this to get x^2-5x+6=0. So to factorise this we need two number which add to make -5, and multiply to make 6. Here -2 and -3 work, so we get (x-2)(x-3)=0.Solving this gives us x=2 or x=3.We can substitute these values into either of our original equations to obtain the corresponding y values. If x=2, y=x-4 = -2, or if x=3, y = x-4 = -1. So our solutions are (2, -2) and (3,-1). We can check these by substituting them into our other original equation to see if they are solutions... they are!

Answered by Georgia C. Maths tutor

4933 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


Given the function y = x^5 + x^3/2 + x + 7 Express the following in their simplest forms: i) dy/dx ii) ∫ y dx


Why is the derivative of inverse tan(x) 1/(1+x^2)?


Given y=2x(x^2-1)^5, show that dy/dx = g(x)(x^2-1)^4 where g(x) is a function to be determined.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences