Find ∫ (2x^5 - 1/(4x^3)-5) dx. giving each term in its simplest form.

with integration you need to increase the power and divide through by the new power for each term in the equation.2x5 goes to 2x6/6 = x6/3-1/(4x3) is equal to -x-3/4 which then goes to -x-2/4/-2 = x-2/8 = 1/8x2-5 goes to -5xwith integration a constant is also added to the end. this is due to the constant disappeareing during differentiation which is the reverse of integration.so the final solution is :x6/3 + 1/8x2 - 5x + c

KY
Answered by Kieran Y. Maths tutor

5932 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find (and simplify) an expression, in terms of n, for the sum of the first n terms of the series 5 + 8 + 11 + 14 + ... ?


How do I integrate and differentiate 1/(x^2)?


How do I find the integral ∫(ln(x))^2dx ?


(a) Find the differential of the the function, y = ln(sin(x)) in its simplest form and (b) find the stationary point of the curve in the range 0 < x < 4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning