Given that k is a real number and that A = ((1+k k)(k 1-k)) find the exact values of k for which A is a singular matrix.

okay so A is a 2x2 matrix.for it to be singular its determinate has to equal 0.a 2x2 matrix's determinate is equal to m1,1m2,2 - m1,2m2,1for this example:det(A) = (1+k)(1-k) - (k)(k) = 0multiplying out the brackets(1+k)(1-k) becomes 1-k+k-k2 = 1-k2(k)(k) becomes k2so det(A)= 1-k2-k2 = 1-2k2 = 0solving for k1=2k21/2 = k2so k = +/-SQRT(1/2)

KY
Answered by Kieran Y. Further Mathematics tutor

3237 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How does proof by induction work?


using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


A=[5k,3k-1;-3,k+1] where k is a real constant. Given that A is singular, find all the possible values of k.


What is the general solution to the equation d2y/dx2 + dy/dx - 2y = -3sinx + cosx (d2y/dx2 signals a second order derivative)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences