Solve the following equation: (3(x-6) - 81)/4x = 0

The first step is to realise that a trivial solution of x is x = 0, which can be determined from the '4x' denominator. Now zooming in on the numerator and expanding gives us '3x^2 - 18 - 81'. Looking at the coefficients a factor of 3 can be taken out, leaving us with 'x^2 - 6 - 27'.Thinking of numbers that multiply to -27 and add to -6, the 27 immediately highlights that these will be some combination of 9 and 3. It is now apparent that the solution to this problem is in the form of (x-9)(x+3), giving x = 9, -3 or 0

HP
Answered by Harry P. Maths tutor

3316 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

x^2 + 6x + 8


How do you write 36 as a product of its prime factors?


Solve the simultaneous equations, x+y = 16, 5x -2y = 17


Edexcel, 2016, Foundation Maths GCSE: A running club has 50 members. 30 members take part in road races, 15 members take part in fell races, 12 members do not run in road or fell races. How many members run both fell and road races?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning