A body with speed v is projected from the surface of the earth(mass M & radius R). Find the maximum distance from the earth that this body reaches before returning back to earth, as a function of the initial speed v, M, R and the gravitational constant G

This question tests the students' understanding on conservation of energy, gravitational potential and algebraic manipulation.The first step is identifying that the principle to use is the conservation of energy:K.E. initial + P.E. intial =K.E. final + P.E. final .When you substitute in the expressions for the energies this becomes: 1/2 m v2 -GMm/R = 1/2 m v2final -GMm/rfinal. Another key step in solving it, is recognising that the maximum height occurs at the point where vfinal =0. The rest is just rearranging so that you have r in terms of v,G,M,R until you reach: r =2GMR/(2GM-Rv2). From this expression, a lot of useful information can be gathered, for example one can derive the escape velocity of a body from earth

Answered by Constantinos V. Physics tutor

1360 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A stationary unstable neutral particle decays into 2 separate particles with equal mass and velocity, what might the resulting bubble chamber diagram look like?


How do you use a Variable Resistor to determine values to show the relationship between I and V?


Can a projectile of speed 10m/s at an angle of 45° to the horizontal following a path perpendicular to a wall 8m away and 6m high reach beyond the wall? Justify your answer. Take g as 10m/s/s


In an electric propulsion system, alpha particles are accelerated through a potential difference of 100kV at an average rate of 10^20 alpha particles per second. Calculate the average thrust the system can provide.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences