A body with speed v is projected from the surface of the earth(mass M & radius R). Find the maximum distance from the earth that this body reaches before returning back to earth, as a function of the initial speed v, M, R and the gravitational constant G

This question tests the students' understanding on conservation of energy, gravitational potential and algebraic manipulation.The first step is identifying that the principle to use is the conservation of energy:K.E. initial + P.E. intial =K.E. final + P.E. final .When you substitute in the expressions for the energies this becomes: 1/2 m v2 -GMm/R = 1/2 m v2final -GMm/rfinal. Another key step in solving it, is recognising that the maximum height occurs at the point where vfinal =0. The rest is just rearranging so that you have r in terms of v,G,M,R until you reach: r =2GMR/(2GM-Rv2). From this expression, a lot of useful information can be gathered, for example one can derive the escape velocity of a body from earth

Answered by Constantinos V. Physics tutor

1305 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Given the rate of thermal energy transfer is 2.7kW, the volume of the water tank is 4.5m^3, the water is at a temperature of 28oC, density of water is 1000kgm-3 & c=4200Jkg-1K-1. Calculate the rise in water temperature that the heater could produce in 1hr


A car moves from rest and accelerates uniformly at 4m/s/s, how far will it have traveled after 10 seconds?


Why is the centripetal force necessary for circular motion?


What is the period and frequency of a wave? - GCSE or A-Level students may ask this


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences