Particle A (60kg) moves right at 50m/s. It collides with particle B (250kg) moving left at 10m/s. If after the collision particle A moves left at 20m/s, calculate the final velocity of particle B

First the total initial momentum of the particle system is calculated. Treat right as the positive x-direction and left as the negative x-direction. Then:Total initial momentum (Pi) = Inital momentum of A + Intital momentum of BPi = (60kg)(+50ms^-1) + (250kg)(-10ms^-1) = (3000kg ms^-1) + (-2500kg ms^-1) = +500kg ms^-1Conservation of momentum:Total inital momentum (Pi) = Total final momentum (Pf)Pf = (60kg)(-20ms^-1) + (250kg)(vB) = (-1200kgms^-1) + (250kg vB) =500kgms^-1where vB is the unknown final velocity of particle B.Rearranging the above to make vB the subject:vB = ( 500kgms^-1 - -1200kgms^-1)/(250kg) = (1700kgms^-1)/(250kg) = 6.8ms^-1

Answered by Oliver L. Physics tutor

1409 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What are the similarities and differences between an elastic and an inelastic collision?


Why does water stay in the bucket if it is swung through a loop fast enough?


A ball is dropped from rest at a height of 2 metres. Assuming acceleration due to gravity (g) is 10m/s^2 calculate the velocity of the ball just before it hits the floor.


What is meant by the doppler effect?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences