If f(x)=(4x^2)-(8x)+3, find the gradient of y=f(x) at the point (0.5,0)

When you see the question asking you to find the gradient at a point in the curve, the first thing you have to do is differentiate. This is because when we differentiate, we find the equation of the tangent to the curve at that point, which is the same as the gradient. So for this equation, we can differentiate by using the main differentiation rule which is when y=xn, dy/dx=nxn-1. Using this we will get: dy/dx= f'(x) =(4x2)x(2-1)-(8x1)x(1-1)+(3x0)x(0-1) = 8x-8We then substitute in the point (0.5,0) where x=0.5 to get: f'(0.5)=-4The gradient at the point (0.5,0) is equal to -4.

Answered by Girthanaah K. Maths tutor

6028 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation (4x^2-y^3+3^2x)=0. The point P (0,1) lies on C: what is the value of dy/dx at P?


Use integration by parts to find the integral of x sin(3x)


A girl saves money over 200 weeks. She saves 5p in Week 1, 7p in Week 2, 9p in Week 3, and so on until Week 200. Her weekly savings form an arithmetic sequence. Find the amount she saves in Week 200. Calculate total savings over the 200 week period.


Use integration by parts to integrate the following function: x.sin(7x) dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences