Find the integral of (cosx)*(sinx)^2 with respect to x

This is a common example of an integral that is a product of two functions whose derivatives are related. As we know the derivative of sinx is cosx, we can use substitution to easily solve this - let our U= sinx, and dU/dx = cosx so dU = cosxdx. Input the substitution to give the integral of U2dU, which by the power rule is simply solved as U3/3, without forgetting the constant C. Substituting U we find that the final answer is (sin3x)/3 + C

Answered by Harry S. Maths tutor

5342 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is it that the sum of all natural numbers up to n is 1/2(n)(n+1)?


Given that y= 1/ (6x-3)^0.5 find the value of dy/dx at (2;1/3)


Find the first and second derivative of f(x) = 6/x^2 + 2x


A curve has equation y= e^x -5x, Find the coordinates of the stationary point and show it is a minimum point


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences