Find the integral of (cosx)*(sinx)^2 with respect to x

This is a common example of an integral that is a product of two functions whose derivatives are related. As we know the derivative of sinx is cosx, we can use substitution to easily solve this - let our U= sinx, and dU/dx = cosx so dU = cosxdx. Input the substitution to give the integral of U2dU, which by the power rule is simply solved as U3/3, without forgetting the constant C. Substituting U we find that the final answer is (sin3x)/3 + C

HS
Answered by Harry S. Maths tutor

6161 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the general solution of the equation tan(2x + pi/2) = SQRT(3), giving your answer for x in terms of π in a simplified form.


Show that Sec2A - Tan2A = (CosA-SinA)/(CosA+SinA)


Find the first 4 term of the binomial expansion (2-4x)^5


The graphs of functions f(x)=e^x and h(x)=e^(-.5x), where x is a real number and 0<x<1 ,lie on a plane. Draw these functions and find the area they and the line x=0.6 enclose using integration correct to 3 decimal places


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences