Find the integral of (cosx)*(sinx)^2 with respect to x

This is a common example of an integral that is a product of two functions whose derivatives are related. As we know the derivative of sinx is cosx, we can use substitution to easily solve this - let our U= sinx, and dU/dx = cosx so dU = cosxdx. Input the substitution to give the integral of U2dU, which by the power rule is simply solved as U3/3, without forgetting the constant C. Substituting U we find that the final answer is (sin3x)/3 + C

Answered by Harry S. Maths tutor

5866 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Particles P and Q of masses 0.4kg and m kg are joined by a light inextensible string over a smooth pulley. When released Q accelerates downward at 2.45ms^-2. Find m.


Find the general solution to the differential equation '' (x^2 + 3x - 1) dy/dx = (2x + 3)y ''


How do I know which method of diffirentiation to use?


differentiate y = 4x^3(12e^-4x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences