Prove De Moivre's by induction for the positive integers

First we check the formula for our first case, n=1 where (cosx + isinx)n =cosnx + isinnx (cosx + isinx)1 = cos(1x) + isin(1x) - holds true for n=1 next we assume true for our case n=k(cosx + isinx)k = coskx + isinkxnext we show that if the case for n=k is true, then the case n=k+1 is true.by inputting n=k+1 we get (cosx+isinx)(k+1)=(cosx+isinx)(cosx+isinx)know as we assumed for n=k ,this equals (cosx+isinx)(coskx+isinkx)this gives cosxcoskx +icosxsinkx +isinxcoskx -sinxsinkxsimplifying to (coskxcosx -sinxsinkx) + i(cosxsinkx + sinxcoskx)finally through the compound angle formulae we reach our desired result: (cosx+isinx)k+1 = cos((k+1)x) + isin((k+1)x) conclusion: If n=k holds true, then n=k+1 holds true. Since n=1 holds true we have now shown that De Moivre's theorem holds true for all positive integers.

Related Further Mathematics A Level answers

All answers ▸

Find the area of the surface generated when the curve with equation y=cosh(x) is rotated through 2 pi radians about the x axis, with 2<=x<=6


how do I do proofs by induction?


How do I find the inverse of a 3x3 matrix?


How to integrate ln(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences