Find the GS to the following 2nd ODE: d^2y/dx^2 + 3(dy/dx) + 2 = 0

Set up the auxiliary equation by letting (dy/dx) = m
So we have: m2 + 3m + 2 = 0
Solve for m and we get: (m+1)(m+2) = 0Therefore, m1=-1 and m2=-2
Now we see we have 2 different real numbers as the solutions to our auxiliary equation. So employ the GS in the form of: y = Aem1t + Bem2t
Therefore we have the GS to our 2nd ODE given above to be: y = Ae-t + Be-2t

Related Further Mathematics A Level answers

All answers ▸

How can we describe complex numbers ?


Find a vector that is normal to lines L1 and L2 and passes through their common point of intersection where L1 is the line r = (3,1,1) + u(1,-2,-1) and L2 is the line r = (0,-2,3) + v(-5,1,4) where u and v are scalar values.


Solve the equation 2(Sinhx)^2 -5Coshx=5, giving your answer in terms of natural logarithm in simplest form


When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences