Find the GS to the following 2nd ODE: d^2y/dx^2 + 3(dy/dx) + 2 = 0

Set up the auxiliary equation by letting (dy/dx) = m
So we have: m2 + 3m + 2 = 0
Solve for m and we get: (m+1)(m+2) = 0Therefore, m1=-1 and m2=-2
Now we see we have 2 different real numbers as the solutions to our auxiliary equation. So employ the GS in the form of: y = Aem1t + Bem2t
Therefore we have the GS to our 2nd ODE given above to be: y = Ae-t + Be-2t

IG
Answered by Isaac G. Further Mathematics tutor

1870 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution to: d^(2)x/dt^(2) + 7 dx/dt + 12x = 2e^(-t)


Solve the following, giving your answers in terms of ln a: 7 sechx - tanhx =5


Prove by induction that 2^(6n)+3^(2n-2) is divsible by 5. (AS Further pure)


Does the following matrix A = (2 2 // 3 9) (upper row then lower row) have an inverse? If the matrix A^2 is applied as a transformation to a triangle T, by what factor will the area of the triangle change under the transformation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences