Solve the simultaneous equations: 2x+5y=25, x=y+2

using our second equation, we can see that x=y+2. Therefore we can sub x into the first equation. This will give us 2*(y+2)+5y=25. We can go ahead and expand the brackets, which gives us 2y+4+5y=25. We can combine the y terms which gives 7y+4=25. We can take 4 away from both sides with gives 7y=21, and divide both sides by 7 so y=3. We can sub 3 into y in the original equation, to give that x=5.

LW
Answered by Louis W. Maths tutor

3608 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 2x + y = 18, x - y =6.


Area of a shaded trapezium within a rectangle involving algebra.


Factorise and solve 3x^2-x-10=0


A class of pupils were asked about how they travelled to school on a particular day. 1/6 of the pupils were driven to school in a car. 2/5 of the pupils took the bus. The rest of the pupils walked to school. Calculate the fraction of pupils who walk


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning