Solve the simultaneous equations: 2x+5y=25, x=y+2

using our second equation, we can see that x=y+2. Therefore we can sub x into the first equation. This will give us 2*(y+2)+5y=25. We can go ahead and expand the brackets, which gives us 2y+4+5y=25. We can combine the y terms which gives 7y+4=25. We can take 4 away from both sides with gives 7y=21, and divide both sides by 7 so y=3. We can sub 3 into y in the original equation, to give that x=5.

Answered by Louis W. Maths tutor

3299 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If (2/3)^n=〖(3/2)〗^2 what is the value of n


How would you factorise x^2 + 4x + 4


A and B are points on a circle, centre O. BC is a tangent to the circle. AOC is a straight line. Angle ABO = x°. Find the size of angle ACB, in terms of x. Give your answer in its simplest form. Give reasons for each stage of your working.


A and B are on the line 3x+2y=6. At A x=0, what is y? At B y=0, what is x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences