How can I prove that an angle in a semi-circle is always 90 degrees?

If we take the diameter of a circle and create an angle on the circumference at point C of the circle from the two points where the diameter meets the circumference (points A and B), the angle created will always equal 90 degrees. To prove this we can draw a line from point C to the centre (point O). We have now created two isosceles triangles (O,A,C) and (O,B,C). Therefore, angle OAC = angle OCA (we will call this angle x) and angle OBC = OBA (we will call this angle y).Our angle at point C, therefore is equal to x+y.We can now return to the original triangle (A,B,C) and using our triangle knowledge we can say:x+y+(x+y)=1802x+2y=180x+y=90

DW
Answered by David W. Maths tutor

4668 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the equation ((2x+3)/(x-4))-((2x-8)/(2x+1)) = 1 to 2 decimal places.


A train travels for 240 minutes to travel a distance of 220 miles. Assuming the trains speed is constant, what is the train's speed in miles per hour?


How to be fully prepared for the exam?


How do you measure the gradient of a straight line joining two points?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning