Functions: If f(x)=3x^2 - 4 and g(x) = x + 3, 1) Evaluate f(3), 2) Find the inverse of f(x) (f^-1(x)), 3)Find fg(x).

  1. in this case x=3 so you substitute it into f(x) to get f(3) = 3(3)2 - 4 = 3*9 -4 = 27 - 4 = 232) There are 2 methods to this question, a logical method, and a more mathematical method. The logical method is working backwards through BIDMAS so the last operation you perform with f(x) is -4, so the opposite of this would be the first operation of f-1(x) and the next is the 3 then the x2 , so f-1(x) = ((x+4)/3)1/2.The mathematical method is to make f(x)=y and rewrite the equation y=3x2 -4, then swap the two variable x & y, x=3y2-4, and finally you make y the subject of the equation by rearranging the equation. x+4=3y2 , (x+4)/3 = y2 , ((x+4)/3)1/2 = y, and therefore f-1(x) = ((x+4)/3)1/2, which is the same as the previous method, and a good way to check these answers is to put your answer from 1) into the equation and you should end up with 3, f-1(23) = ((23+4)/3)1/2=3.3)The hardest part is remembering the order in which you place the functions, the best way to think about it is working outwards from the brackets, so g is applied to x first, then once that function is complete, you apply f to the answer to that i.e. g(x) = x + 3. so fg(x) is the same as f(x+3) which is fg(x) = 3(x+3)2-4 and then you can expand this expression to get a quadratic equation, fg(x) = 3x2+18x + 23.
JP
Answered by Jason P. Maths tutor

5838 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For sketching the graph of the modulus of f(x) (in graph transformations), why do we reflect in the x-axis anything that is below it?


Differentiate f = ln(x^2 + 1) / (x ^ 2 + 1).


How do you integrate by parts?


I don't understand how to visualise differentiation, please could you show my an example to allow me to understand what it actually is better?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning