The enthalpy of combustion of ethanol is −1371 kJ mol−1 . The density of ethanol is 0.789 g cm−3 . Calculate the heat energy released in kJ when 1 dm3 of ethanol is burned.

1 dm3 of ethanol is equal to 1000 cm3, so the mass of ethanol used is =density x volume = 0.789 g cm-3 x 1000 cm3 = 789gMolar mass of ethanol = (2x12)+(6x1) +(1x16)= 46 g mol-1Moles of ethanol = mass/molar mass = 789/46=17.15 molesHeat Energy produced = ethalpy x moles = 1371 kJ mol-1 x 17.15 = 23516 kJ

Answered by Sophie L. Chemistry tutor

14353 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Write equations for the reaction of propanoic acid with methanol and name any organic products.


What is relative molecular mass (RMM) and why use carbon-12?


Why do transition metals form coloured compounds?


Explain the difference in reactivity between benzene and phenol with bromine?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences