Why does integration by parts work?

Recall the product rule for differentiation: the derivative of uv is equal to u'v+uv'.If we use the fact that integration reverses differentiation (so the integral of f' is f), then we calculate that uv is equal to integral of u'v+uv'. We can then rearrange this to get that the integral of u'v is equal to uv minus the integral of uv'.The reason integration by parts is useful is that if we may not know how to integrate u'v, but if we do know how to integrate uv', we can find the solution. A good example is how should we integrate x cos(x)?Lets choose u'=cos(x), v=x. Then we know that u=sin(x), v'=1.So the integral of x cos(x) is equal to x sin(x) minus the integral of sin(x)*1=sin(x). Hence the integral of x cos(x) is equal to x sin(x) +cos(x).

TB
Answered by Thomas B. Maths tutor

4584 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 1/((x^2)(1-3x) in partial fractions.


Find the equation of the tangent to the curve y = 3x^2 + 4 at x = 2 in the form y = mx + c


(a) Find the differential of the the function, y = ln(sin(x)) in its simplest form and (b) find the stationary point of the curve in the range 0 < x < 4.


How do I find the co-ordinates and nature of the stationary points on a curve?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning