Why does integration by parts work?

Recall the product rule for differentiation: the derivative of uv is equal to u'v+uv'.If we use the fact that integration reverses differentiation (so the integral of f' is f), then we calculate that uv is equal to integral of u'v+uv'. We can then rearrange this to get that the integral of u'v is equal to uv minus the integral of uv'.The reason integration by parts is useful is that if we may not know how to integrate u'v, but if we do know how to integrate uv', we can find the solution. A good example is how should we integrate x cos(x)?Lets choose u'=cos(x), v=x. Then we know that u=sin(x), v'=1.So the integral of x cos(x) is equal to x sin(x) minus the integral of sin(x)*1=sin(x). Hence the integral of x cos(x) is equal to x sin(x) +cos(x).

Answered by Thomas B. Maths tutor

3637 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Susan is researching the population growth of a city. She proposes that x, the number of people in the city, t years after 2017 is given by x=250,000e^(0.012t) A.population in 2017 B.population in 2020 C.During which year would the population have doubled


Differentiate (4x+9)^3


Integrate (x+3)^(1/2) .dx


Co-ordinate Geometry A-level: The equation of a circle is x^2+y^2+6x-2y-10=0, find the centre and radius of the circle, the co-ordinates of point(s) where y=2x-3 meets the circle and hence state what we can deduce about the relationship between them.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences