Solve the following: sinx - cosx = 0 for 0≤x≤360

We know that sinx/cosx = tanx. Therefore we can write sinx - cosx = 0 as sinx = cosx . By diving both sides by cosx, we get tanx = 1. By taking tan inverse of both sides, we can see that for 0≤x≤360, we get x to be 45 or 225.

Answered by Aaman K. Maths tutor

14834 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I deal with parametric equations? x = 4 cos ( t + pi/6), y = 2 sin t, Show that x + y = 2sqrt(3) cos t.


Use chain rule and implicit differentiation to find dy/dx for y^3 = 1 + 3*x^2, then show that they are equal


Differentiate the function f(x)=2xsin3x


The curve C has equation ye^(-2x) = 2x + y^2. Find dy/dx in terms of x and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences