Solve the following: sinx - cosx = 0 for 0≤x≤360

We know that sinx/cosx = tanx. Therefore we can write sinx - cosx = 0 as sinx = cosx . By diving both sides by cosx, we get tanx = 1. By taking tan inverse of both sides, we can see that for 0≤x≤360, we get x to be 45 or 225.

AK
Answered by Aaman K. Maths tutor

16722 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the addition formula for sin(x+y), find sin(3x) in terms of sin(x) and hence show that sin(10) is a root of the equation 8x^3 - 6x + 1


Derive the formula for differentiation from first principles


solve the inequality x^2+4x-21>0


Differentiate y = (x^2 + 3)^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning