How can I find the stationary point of y = e^2x cos x?

At a stationary point of y, dy/dx = 0.Step 1: Let's find dy/dx first by differentiating. To differentiate the product of two functions, we can use the product rule:d(fg)/dx = f * dg/dx + df/dx * g. So dy/dx = d(e^2x cos x)/dx = (e^2x) * (-sin x) + (2e^2x) * cos x = 2e^2x cos x - e^2x sin x.Step 2: Now we've found dy/dx, we can set it to 0. So we can set 2e^2x cos x - e^2x sin x = 0. Therefore 2e^2x cos x = e^2x sinx. We can cancel e^2x from each side because it is never equal to zero, therefore 2cos x = sin x. Dividing by cos x gives 2 = tan x. We can use arctan now to find x: arctan 2 = arctan(tan x) = x. Now finally we know x, so we can find y by plugging into our original equation: y = e ^ (2*arctan2) * cos (arctan2) = 4.09

MT
Answered by Meg T. Maths tutor

12789 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = 3x^4 – 8x^3 – 3. Find dy/dx.


How do i use chain rule to calculate the derivative dy/dx of a curve given by 2 "parametric equations": x=(t-1)^3, y=3t-8/t^2


How do I differentiate a function of x and y with respect to x?


Integrate xsin2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning