How do you integrate e^x cos x

∫ excos x dx 

First of all, we have to think of which method we want to use to approach this problem. There are a few options we can consider such as integration by parts and substitution. In this case, integration by parts would be suitable.

Now we have to recall the integration by parts formula which is

∫ u dv/dx dx = uv - ∫ v du/dx dx
From the problem above, 
we can set u= cos x and dv/dx = ex  

du/dx = -sin x and v= ex

∫ excosx dx = excos x - ∫ ex (-sin x) dx
                   = excos x + ∫ exsinx dx

Now we have to repeat the integration by parts process again for ∫ ex sin x dx
Let u= sin x and dv/dx = ex

       du/dx = cos x and v= ex

 ∫ ex cos x dx = excos x + ( ex sin x - ∫ ex cos x dx )

2 ∫excos x dx = ecos x + esin x
∫  ex cos x dx = 1/2 ( excos x + ex sin x ) 

Answered by Ta J. Maths tutor

50232 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y=cos(3x)cosec(4x), find dy/dx.


a) Simplify 2ln(2x+1) - 10 = 0 b) Simplify 3^(x)*e^(4x) = e^(7)


A straight line passes through the point (2,1) and has a gradient of 3. Find the co-ordinates where the line crosses the x and y axes


How to find out where 2 lines cross/simultaneous equations


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences