Integrate the function y = 2x^2 + 3x + 8 with respect to x.

Answer = 2x^3/3 + 3x^2/2 + 8x + CThis is an example of numerical integration from C1. To begin to answer this question, we can integrate each term at a time. To integrate this function, we raise the power of the polynomial and divide the new polynomial by the new power i.e if y = x, the integral would be (x^(1+1))/(1+1). So after doing this term by term, most students would finish there but there is a final term which is the polynomial with power 0, in the answer I wrote it as the arbitrary constant C.

Answered by Michael C. Maths tutor

3723 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the trigonometric identity for tan(A + B), prove that tan(3x)=(3tan(x)-tan^3(x))/(1-3tan^2(x))


Integrate ((x^3)*lnx)dx


Differentiate y=(3x-1)/(2x-1)


Find the coordinate of the turning point of the curve y = x^2 - 10x + 7, by completing the square


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences