A curve with equation y=f(x) passes through point P at (4,8). Given that f'(x)=9x^(1/2)/4+5/2x^(1/2)-4 find f(X).

To find f(x) using its derivative, first integrate f'(x) with respect to x using the 'add one to the power and divide by the new power' technique remembering to add the constant c. To make this easier, turn the denominator x to a numerator with a negative power and let the square roots be shown as powers of a half. f(x) = integral f'(x) dx = (9/4)(2/3)x^(3/2)+(5/2)(2/1)x^(1/2)-4x+c = 3x^(3/2)/2+5x^(1/2)-4x+c Then find a value for c. To do this, substitute into f(x) the known value of x from the given point P and set it equal to the known value of y, also from point P. Then rearrange to solve for c. when x = 4, y = 8 f(x) = 12+10-16+c = 8c = 2Sub this found value back in to find f(x). f(x) = 3x^(3/2)/2 + 5x^(1/2) - 4x + 2

Answered by Em C. Maths tutor

3434 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation of a circle is x^2+y^2-6x-4y+4=0. i) Find the radius and centre of the circle. ii) Find the coordinates of the points of intersection with the line y=x+2


A circle has the equation x^2 + y^2 - 4x + 10y - 115 = 0. Express the equation in the form (x - a)^2 + (y - b)^2 = k, and find the centre and radius of the circle.


The rate of decay of the mass is modelled by the differential equation dx/dt = -(5/2)x. Given that x = 60 when t = 0, solve the quation for x in terms of t.


A curve has equation y = x^3 - 48x. The point A on the curve has x coordinate -4. The point B on the curve has x coordinate - 4 + h. Show that that the gradient of the line AB is h^2 - 12h.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences