Answers>Maths>IB>Article

Find out the stationary points of the function f(x)=x^2*e^(-2x)

Using the product rule (u'v+v'u, where u and v are the chosen substitutes) to find the first derivative will be dy/dx=x'=2xe^(-2x)+x^(2)e^(-2x)(-2)=2xe^(-2x)(x-x^2). This will give the details about the slope of the given function at any instance of time.If the stationary points are to be find the second derivative of the should be found as shown;d^(2)y/dx^2=2e^(-2x)(1-4x+2x^2). Stationary point will give the points where the gradient is zero.Therefore by saying d^(2)y/dx^2=0, the stationary points can be found and for this example those values are calculated as x=1+1/sqrt(2) and 1-1/sqrt(2).

BI
Answered by Bilkan I. Maths tutor

2963 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Let f (x) = sin(x-1) , 0 ≤ x ≤ 2 π + 1 , Find the volume of the solid formed when the region bounded by y =ƒ( x) , and the lines x = 0 , y = 0 and y = 1 is rotated by 2π about the y-axis.


How do i solve simultaneous equation with more than two equations and two unknowns?


When integrating by parts, how do I decide which part of the integrand is u or f(x) and which dv or g'(x)?


Solve equation 5^(2*x) = 5^(x)+5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences