Solve the simultaneous equations : x ^2+2y=9, y=x+3 to find solutions for x and y.

We must use the substitution method for this question because the first equation is a quadratic. Take the more simple equation (the second one), and use that to substitute the value for y in to the first equation:x^2+2(x+3)=9. Expand the brackets and rearrange to get: x^2+2x-3=0.Now we must factorise, which will give us 2 solutions for x. Factorising gives: (x+3)(x-1)=0.The solutions for x are therefore, x = -3, x = 1. Using these solutions for x and substituting them on to the other equation will give us corresponding solutions for y:When x = -3, y = 0 and when x = 1, y = 4.

Answered by Callum R. Maths tutor

2684 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Why is it that when I am asked to factorise 3x^2-13x-10, I am not able to cancel two of the x's so that the answer is 3x-13-10?


Show that 0.81 reocurring = 9/11


Find the equation of the line that passes through ( 5 , -4 ) and (3,8).


Find the roots of the following equation x^2 + 6x + 5 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences