Solve the simultaneous equations : x ^2+2y=9, y=x+3 to find solutions for x and y.

We must use the substitution method for this question because the first equation is a quadratic. Take the more simple equation (the second one), and use that to substitute the value for y in to the first equation:x^2+2(x+3)=9. Expand the brackets and rearrange to get: x^2+2x-3=0.Now we must factorise, which will give us 2 solutions for x. Factorising gives: (x+3)(x-1)=0.The solutions for x are therefore, x = -3, x = 1. Using these solutions for x and substituting them on to the other equation will give us corresponding solutions for y:When x = -3, y = 0 and when x = 1, y = 4.

Answered by Callum R. Maths tutor

2425 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How would I simplify (3x^2 − 8x − 3)/(2x^2 −6x) fully?


Complete the square of X^2 + 4X - 12


3x + 4y + 7z = 12. x=2 and y=-1, what is the value of z to 2 dp?


What is the equation of the straight line perpendicular to the midpoint of the straight line that passes through (0,5) and (-4,7)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences