n is an integer such that 3n + 2 ≤ 14, and 6n/(n^2 + 5) >1. Find all possible values of n.

Step 1: Simplify 3n + 2 ≤ 14 3n ≤ 12 n ≤ 4 and 6n > n^2 + 5 0 > n^2 -6n + 5 Factorise (n-5)(n-1) < 0
Step 2: Let (n-5)(n-1) = 0, so n=5 or n=1 If (n-5)(n-1) < 0, then 1<n<5 (use graph/substitution)
Step 3: Combine, n can take values 2,3,4.

CM
Answered by Catriona M. Maths tutor

10440 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write the equation x^2 + 6x - 40 = 0 in the form (x + a)^2 - b = 0 and then solve for x


A curve is given by the equation y=x^3-11x^2+28x; find the coordinates of the points where the curve touches the x-axis.


A class of pupils were asked about how they travelled to school on a particular day. 1/6 of the pupils were driven to school in a car. 2/5 of the pupils took the bus. The rest of the pupils walked to school. Calculate the fraction of pupils who walk


How do I complete the square


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences