Solve the simultaneous equations y = x + 3 and y = x^2 + 3x

Step 1: Recognise the quadratic term, this cannot be solved through elimination. Therefore we must need to use substitution. Substitute y = x + 3 into the quadratic. Gives x + 3 = x2 + 3xStep 2: Rearrange to get all terms on one side (the form of a familiar quadratic). Gives x2 + 2x - 3 = 0Step 3: Factorise. Gives (x + 3)(x - 1) = 0. Step 4: If a product of two numbers equals zero, one or both of the numbers must be zero. Set each bracket equal to zero to obtain solutions of x. Gives x = -3, 1Step 5: Sub each solution for x back into y = x + 3 to give y = 0, 4. Solutions are x = -3, y = 0 and x = 1, y = 4.Extension: This question can be easily extended by asking the student to solve the simultaneous equations graphically (tests ability to draw straight lines and quadratics).

Answered by Sam N. Maths tutor

6242 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

You are given a square which you are told has a total area of 100 squared centimetres. You are also told that one side of the square has dimension 4(3x + 2), and the other has dimension 8x - y. What are the values of x and y?


Solve 67x – 5 = 12x + 13


Square root of 81?


What is the best way to study for a Maths exam?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences