Solve algebraically the system of equations: 4x+5y=-3 and 6x-2y=5

Label both equations to make it easy to refer to them in your answerEqn 1: 4x+5y=-3Eqn 2: 6x-2y=5To solve these equations we need to be able to eliminate either the y terms or the x terms. In order to do this it is necessary to multiply the equations so the coefficents of either the x's or the y's are the same. For example, we can multiply Eqn 1 by 2 and we can multiply Eqn 2 by 5.Eqn 1 (x2): 8x+10y=-6Eqn 2 (x5): 30x-10y=25Now we can see that the coefficents of the y values in Eqn 1 and Eqn 2 are 10 and -10. This means we can add both equations togther to elimate the y coefficents. Eqn 1 + Eqn 2: 38x=19The equation needs to be simplified so we can obtain a value of x.38x=19x=19/38x=1/2We have a value for x but we need to make sure we finish the question and we find a value for y. We can do this by subbing in the value of x back into one of the original equations. For example subbing x=1/2 back into equation 1.4x+5y=-34(1/2)+5y=-32 +5y=-35y=-3-25y=-5y=-1*So the final answer is x=1/2 and y=-1.
N.B this question is for National 5 level maths

Related Maths Scottish Highers answers

All answers ▸

Show that (𝑥 − 1) is a factor of 𝑓(𝑥)=2𝑥^3 + 𝑥^2 − 8𝑥+ 5. Hence fully factorise 𝑓(𝑥) fully.


Point K(8,-5) lies on the circle x^2 +y^2 - 12x - 6y - 23. find the equation of the tangent at K.


A triangle has vertices A(-3,5), B(7,9) and C(2,11). What is the equation of the median that passes through the vertex C?


The equation x^2 + (k-5)x + 1 = 0 has equal roots. Determine the possible values of k.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences