Find the Cartesian equation of a plane containing the points A(1, 7, -2) B(4, -3, 2) and C(7, 8, 9).

It can be shown that the equation of any plane can be given by r.n=a.n, where r = xi + yj + zk, n is a direction vector normal to the plane, and a is any point vector on the plane. a can be found easily (three points are already given in the question for us to choose from – in this case we’ll choose point A for simplicity). As such, the bulk of the work comes in finding n.
As n is a direction vector normal the plane, this can be found by evaluating the cross product of any two direction vectors lying on the plane. We can use the three given points to find both vectors: AB and AC, where AB = B – A and AC = C – A. In our case, AB = 3i – 10j + 4k and AC = 6i + j + 11k. Carrying out the cross product operation on these gives n = -114i – 9j + 63k.
Finally, we substitute these values into r.n=a.n giving (xi + yj + zk).(-114i – 9j + 63k) = (i + 7j – 2k).(-114i – 9j + 63k), which simplifies to -114x – 9y + 63z = -303.

GM
Answered by GUSTAF M. Further Mathematics tutor

24495 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I draw any graph my looking at its equation?


Find the complex number z such that 5iz+3z* +16 = 8i. Give your answer in the form a + bi, where a and b are real numbers.


A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0. Find dy/dx and d^2y/dx^2. Verify that C has a stationary point when x = 4


find an expression for the sum of the series of 1 + 1/2cosx + 1/4cos2x +1/8cos3x + ......


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning