Find the Cartesian equation of a plane containing the points A(1, 7, -2) B(4, -3, 2) and C(7, 8, 9).

It can be shown that the equation of any plane can be given by r.n=a.n, where r = xi + yj + zk, n is a direction vector normal to the plane, and a is any point vector on the plane. a can be found easily (three points are already given in the question for us to choose from – in this case we’ll choose point A for simplicity). As such, the bulk of the work comes in finding n.
As n is a direction vector normal the plane, this can be found by evaluating the cross product of any two direction vectors lying on the plane. We can use the three given points to find both vectors: AB and AC, where AB = B – A and AC = C – A. In our case, AB = 3i – 10j + 4k and AC = 6i + j + 11k. Carrying out the cross product operation on these gives n = -114i – 9j + 63k.
Finally, we substitute these values into r.n=a.n giving (xi + yj + zk).(-114i – 9j + 63k) = (i + 7j – 2k).(-114i – 9j + 63k), which simplifies to -114x – 9y + 63z = -303.

Related Further Mathematics A Level answers

All answers ▸

Find the nth roots of unity.


Write (1+2i) /(2-i) in form x+iy


A 1kg ball is dropped of a 20m tall bridge onto tarmac. The ball experiences 2N of drag throughout its motion. The ground has a coefficient of restitution of 0.5. What is the maximum height the ball will reach after one bounce


Given that the equation x^2 - 2x + 2 = 0 has roots A and B, find the values A + B, and A * B.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences