A particle is undergoing circular motion in a horizontal circle, that lies within the smooth surface of a hemispherical bowl of radius 4r. Find the distance OC (explained in diagram) if the angular acceleration of the particle is equal to root (3g/8r).

Resolve the reaction force caused by the weight, mg, of the particle horizontally and vertically. Rsin(theta) = mg Rcos(theta)=m(CP)w^2 where w = root (3g/8r).thus tan(theta) = 8r/3CPconsider the right angled triangle OCP and find an expression for tan(theta) in terms of it's sides, hence tan(theta) = OC/CP. Thus, OC/CP = 8r/3CP and therefore Distance OC = 8r/3 (diagram and whiteboard working attached during interview)

Related Further Mathematics A Level answers

All answers ▸

Solve for z in the equation sin(z) = 2


Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.


f(x)=ln(x). Find the area underneath the curve f(x) between 1 and 2.


Show, using the focus-directrix property for an ellipse, that PS +PS'=2a where P is a point on the ellipse and S and S' are the two foci.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences