A particle is undergoing circular motion in a horizontal circle, that lies within the smooth surface of a hemispherical bowl of radius 4r. Find the distance OC (explained in diagram) if the angular acceleration of the particle is equal to root (3g/8r).

Resolve the reaction force caused by the weight, mg, of the particle horizontally and vertically. Rsin(theta) = mg Rcos(theta)=m(CP)w^2 where w = root (3g/8r).thus tan(theta) = 8r/3CPconsider the right angled triangle OCP and find an expression for tan(theta) in terms of it's sides, hence tan(theta) = OC/CP. Thus, OC/CP = 8r/3CP and therefore Distance OC = 8r/3 (diagram and whiteboard working attached during interview)

EB
Answered by Ed B. Further Mathematics tutor

2657 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Using the substitution u = ln(x), find the general solution of the differential equation y = x^2*(d^2(y)/dx^2) + x(dy/dx) + y = 0


When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


A particle is projected from the top of a cliff, 20m above the sea level at an angle of 30 degrees above the horizontal at 20m/s. At what vertical speed does it hit the water?


Find a vector that is normal to lines L1 and L2 and passes through their common point of intersection where L1 is the line r = (3,1,1) + u(1,-2,-1) and L2 is the line r = (0,-2,3) + v(-5,1,4) where u and v are scalar values.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning