(Core 3 level) Integrate the function f(x) = 2 -cos(3x) between the bounds 0, pi/3.

f(x) = 2 - cos(3x)integrate function x term2 -> 2x (raise power of x then divide by new power for polynomial functions of x) -cos(3x) -> -(1/3)(sin(3x)) (using a substitution of 3x = u, then cos(u) integrates to sin(u)) Answer:2x - (1/3)(sin(3x)) + csubstituting bounds,(2*(pi/2) - (1/3(sin(3pi/3))) - (20 - (1/3)(sin(30/3)) = 2pi/3 - 0 = 2pi/3.

Answered by Riku G. Maths tutor

2584 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area under the curve -sin(x)+5x+x^2 between the y-axis and the line x=1


simplify a^m x a^n


Express (5sqrt(3)-6)/(2sqrt(3)+3) in the form m+nsqrt(3) where m and n are integers. [Core 1]


Differentiate y=(x^2+5)^7


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences