(Core 3 level) Integrate the function f(x) = 2 -cos(3x) between the bounds 0, pi/3.

f(x) = 2 - cos(3x)integrate function x term2 -> 2x (raise power of x then divide by new power for polynomial functions of x) -cos(3x) -> -(1/3)(sin(3x)) (using a substitution of 3x = u, then cos(u) integrates to sin(u)) Answer:2x - (1/3)(sin(3x)) + csubstituting bounds,(2*(pi/2) - (1/3(sin(3pi/3))) - (20 - (1/3)(sin(30/3)) = 2pi/3 - 0 = 2pi/3.

Answered by Riku G. Maths tutor

2702 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I know which method of diffirentiation to use?


A curve has equation 2(x^2)+3x+10. What is the gradient of the curve at x=3


find the coordinate of the maximum value of the function f(x) = 9 – (x – 2)^2


Differentiate xcos(x) with respect to x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences