Solve the simultaneous equations: (1) x^2 + y^2 = 25 and (2) y - 3x = 13

Sub (2) y = 13 + 3x into (1)x^2 + (13 + 3x)^2 = 25x^2 + 169 + 39x + 39x + 9x^2 = 2510x^2 + 78x + 144 = 05x^2 + 39x + 72 = 0 (/2)572 = 360 - need ab=360 such that a+b=39a = 24 b = 155x^2 + 24x + 15x + 72 = 0x(5x + 24) + 3(5x + 24) = 0 [take out the gcf, greatest common factor](x + 3)(5x + 24) = 0x = -3x = -24/5y = 13 + 3(-3) = 4y = 13 + 3(-24/5) = -7/5

Answered by Meghna M. Maths tutor

2443 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Integrate x^2 + 1/ x^3 +3x +2 using limits of 1 and 0


Solve the simultaneous equation 6y+3x=24, 4y+5x=28


prove that any odd number squared is one more than a multiple of four.


Determine if the Following equality has real roots: (3*X^2) - (2*X) + 4 = (5*X^2) + (3*X) + 9, If the equation has real roots, calculate the roots for this equation.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences