A positively charged particle enters a magnetic field oriented perpendicular to its direction of motion. Does the particle: A) Change its velocity, B) Change its speed, C) Accelerate in the direction of the magnetic field.

To answer this question you must use the magnetic field "Right Hand Rule". We know that if a charged particle enters a magnetic field it will experience a force ​perpendicular to both​ the magnetic field and its direction of motion.From this result we know that the particle experiences no force along its direction of motion thus no work is done on the particle by the magnetic field. This means that B is ​False​ since the kinetic energy of the particle can not change. This also shows that C is False​ since the field exerts a "Central Force" on the moving particle causing it to enter a circular trajectory.By elimination then, A is ​True​. Though the speed of the particle does not change, the direction does as the particle begins circular motion. Since the velocity depends on both the speed and the direction of motion of an object we see that the magnetic field must be causing a change in velocity of the particle.

Answered by Sam H. Physics tutor

14592 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Given that z = 6 is a root of the cubic equation z^3 − 10z^2 + 37z + p = 0, find the value of p and the other roots.


A student heats a bar of chocolate in the microwave for one minute. When they remove the bar they observe that there are patches of melted chocolate with unmelted chocolate between them. Suggest the mechanism of how this happens.


A piece of card is released from rest at a height of 0.5m above a light gate. It falls freely and a computer measures the velocity as it passes through the light gate to be 3.10m/s. What is the acceleration due to gravity measured by this experiment?


A model truck A of mass 1.2 kg is travelling due west with a speed of 0.90 m/s . A second truck B of mass 4.0 kg is travelling due east towards A with a speed of 0.35 m/s .


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences